Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol ; 101: 1-8, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35227825

RESUMO

Drug tolerance is directly correlated with drug abuse and physical dependence. The development of tolerance is manifested as the decline in pharmacological responses of drugs following repeated administration of the constant dose. The present study evaluated the effect of agmatine in ethanol-induced anti-nociception and tolerance in the tail-flick assay in mice. In an acute protocol, ethanol (1 and 2 g/kg, i.p. [intraperitoneally]) and agmatine (20 and 40 µg/mouse, i.c.v. [intracerebroventricularly]) produced significant analgesic effects in mice, as was evident from the increased baseline tail-flick latency when tested 20 minutes after their administration. Agmatine in a per se non-effective dose (5 µg/mouse, i.c.v.), L-arginine (40 µg/mouse, i.c.v.), and arcaine (25 µg/mouse, i.c.v.) significantly potentiated the anti-nociceptive effect of ethanol. Blood ethanol analysis showed no significant differences in blood ethanol concentration between ethanol/saline- and ethanol/agmatine-treated mice, suggesting that the effects of agmatine were not due to any possible effects on the pharmacokinetics of ethanol. In a separate study, mice were injected with ethanol (2 g/kg, i.p., 12%) or saline (1 mL/kg, i.p.) once daily for 9 days. On days 1, 3, 5, 7, and 9 of the experiment, they were subjected to the tail-flick test. Agmatine (5-20 µg/mouse, i.c.v.), L-arginine (40 µg/mouse, i.c.v.), arcaine (25 µg/mouse, i.c.v.), aCSF (2 µL/mouse, i.c.v.), or saline (1 mL/kg, i.p.) was administered daily prior to the first daily ethanol or saline injections, and reaction latencies were determined in the tail-flick assay. Injections of agmatine, L-arginine, and arcaine prevented the development of tolerance to ethanol-induced analgesia. Given that agmatine and its endogenous modulation can prevent tolerance to the anti-nociceptive effects of ethanol, these data suggest it as a possible new therapeutic strategy for the treatment of alcohol use disorder and associated complications.


Assuntos
Agmatina , Alcoolismo , Agmatina/farmacologia , Agmatina/uso terapêutico , Alcoolismo/tratamento farmacológico , Animais , Arginina/farmacologia , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Etanol , Camundongos
2.
Pharmacol Biochem Behav ; 196: 172976, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32598984

RESUMO

Agmatine is a biogenic amine synthesized following decarboxylation of L-arginine by the enzyme arginine decarboxylase and exhibits favourable outcome in neurodegenerative disorders. Present study was designed to examine the relationship between agmatine and the imidazoline receptors in memory deficits induced by Aß1-42 peptide in mice. Mice were treated with single intracerebroventricular (i.c.v.) injection of Aß1-42 peptide (3 µg) and evaluated for learning and memory in Morris water maze (MWM) and subjected to Aß1-42, TNF-α and IL-6 and BDNF immunocontent analysis within the hippocampus. While the learning and memory impairment was evident in the mice subjected to MWM test following Aß1-42 peptide administration, there was a significant increase in Aß1-42, TNF-α and IL-6 and reduction in BDNF immunocontent within the hippocampus. Daily intraperitoneal (i.p.) treatment with agmatine (10 and 20 mg/kg); imidazoline I1 receptor agonist, moxonidine and imidazoline I2 receptor agonist, 2-BFI starting from day 8 to 27 post-Aß1-42 injection, significantly prevented the cognitive deficits and normalized the Aß1-42 peptide, IL-6, TNF-α and BDNF immunocontent in hippocampus. On the other hand, pre-treatment with imidazoline I1 receptor antagonist, efaroxan and imidazoline I2 receptor antagonist, BU 224 attenuated the effects of agmatine on learning and memory in MWM, IL-6, TNF-α and BDNF content. In conclusion, the present study provides functional evidence for the involvement of the imidazoline receptors in agmatine induced reversal of Aß1-42 induced memory deficits in mice. The data projects agmatine and imidazoline receptor agonists as a potential therapeutic target for the treatment of AD.


Assuntos
Agmatina/uso terapêutico , Peptídeos beta-Amiloides/fisiologia , Receptores de Imidazolinas/agonistas , Receptores de Imidazolinas/antagonistas & inibidores , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/fisiologia , Agmatina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/etiologia , Camundongos , Aprendizagem Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...